Ques 1:

Features: Travel Distance (km)

Number of transfers (integer)

Day of week (weekday / weekend)

bus stop ID (numeric code)

average traffic delay (minutes)

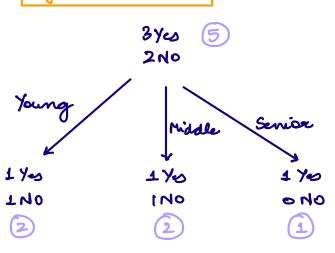
weather condition (clean / rain snow)

- a). Classification problem since the output is a categorical value (Yeo/No).
- (b). feature bus stop ID' should be removed as it doesnot covery predictive information.
- c). Feature Scaling is important because features like kravel distance and average traffic delay have different ranges, which can distort algorithms sensitive to magnitude. Eq: knn requires scaling since it uses distance calculations while Decision Trees donet because they split on thresholds and are unaffected by feature scales.
- d). Linear Regression is not appropriate because it assumes a continuous target variable, which is not the case in this question. More Suitable Choice will be dogistic Regression or Random Forest (for non linear)

Ques 2:

a). Original Dataset:

<y-< th=""></y-<>			
Age Group	Income fevel	Purchase	
Young	Low	No	
Young Hiddle	High Low	769 769	
Middle	Hrigh	Yw	
Senior	High	Yes	



Gini (y |
$$n_j$$
: Young) = $1 - \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]$

Gini (y |
$$2j = \text{Middle}$$
) = $1 - \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]$
= 0.5

Gini (y |
$$x_j$$
 = Middle) = $1 - \left[\left(\frac{1}{l} \right)^2 + \left(\frac{0}{l} \right)^2 \right]$

nj: Income Sevel

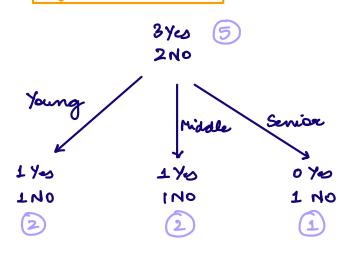
Gini
$$(y|x_j=low)$$
: $1-\left[\frac{0}{2}\right]^2+\left(\frac{2}{2}\right)^2$ = 0

Gini (y|aj:High):
$$1 - \left[\left(\frac{3}{3} \right)^2 + \left(\frac{0}{2} \right)^2 \right] = 0$$

Root Chosen: Income fevel

b). Corrected Dataset

← ~		
Age Group	Income Sevel	Purchase
Young Young Histole	dow High Jour	7°



Gini (y | zj = Young) =
$$1 - \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]$$

Givi
$$(y|z)$$
: Middle $= 1 - \left[\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right]$

Gini
$$(y|x_j : \text{Middle}) = 1 - \left[\left(\frac{0}{1}\right)^2 + \left(\frac{1}{1}\right)^2\right]$$

2j: Income devel

Gini (y|nj=low):
$$1-\left[\frac{0}{2}\right]^2+\left(\frac{2}{2}\right)^2$$
] = 0

Gini (y|aj:High):
$$1 - \left[\frac{2}{3} \right]^2 + \left(\frac{1}{2} \right)^2 \right] = 0.44$$

$$(y|z_j) = \frac{2}{5} \times 0 + \frac{3}{5} \times 0.44 = 0.264$$

Root chosen: Income fevel

E). In original actaset, splitting on Income perfectly separated Yes and NO, giving a highly accurate tree. In corrected dataset, split on Income didnot separate the outcomes perfectly

d). This example highlights the instability (high variance) of decision trees, a small change in data can cause large structural differences. In real world tasks like thurn frediction or loan approval, such instability contend to inconsistent decisions, reducing trust & reliability of model.

Ques 3:

Table II: Confusion Matrix with C = 0.1

	Predic	ted Diseased	Predict	ted Healthy (o
Actual Diseased (1)	40	TP	20	FN
Actual Healthy (0)	5	FP	135	TN

Table III: Confusion Matrix with C = 100

	Pred	icted Diseased (1)	Predic	ted Healthy (o
Actual Diseased(1)	55	TP	5	f M
Actual Healthy (6)	25	FP	115	74

a). C=0.1

Precision:
$$\frac{TP}{TP+FP} = \frac{40}{40+5} = \frac{40}{45} = 0.89$$

Recall =
$$\frac{TP}{TP+FN}$$
 = $\frac{40}{40+20}$ = $\frac{40}{60}$ = 0.67

C= 100

Precision:
$$\frac{TP}{TP+FP} = \frac{55}{55+25} = \frac{55}{80} = 0.69$$

Hissing a discosed plant - Plant is actually discosed but we predicted beauthy - false Negatives are very costly. We want a system where we have less no. of false Negatives. In C:0.1, there are 20 fm whereas is C=100

there are 5 fN. So, we will pick C: 100.

c). Costly operation - actual healthy but predicted diseased false positives should be minimized. With C:01, there are 5
fP and with C:100 there are 25 fP. So, C:01 is better.

Ques 4:

Customer	True Label (y)	Predicted Probability (p)	まっら	£=0.7
C1	1	0.90	1	Ţ
C2	0	0.80	1	1
C3	1	0.70	1	1
C4	0	0.60	1	0
C5	1	0.40	0	0
C6	0	0.30	0	0

a).

t:0.2

走=	0	7
----	---	---

		Predicted		
		1	0	
Actual	1	(1,C3) 2 TP	(cs) T EN	
HOUGO	O	(c2, C4) 2 FP	(C6) IN	

$$TPR = \frac{TP}{TP+FN} = \frac{2}{2+1} = 0.67$$

$$fPR = \frac{fP}{fP+TN} = \frac{2}{2+1} = 0.67$$
Specificity/6st

$$TPR = \underline{TP} = \underline{2} : 0.67$$

$$TP+FN = 2+1$$

$$fPR = \frac{fP}{fP+TN} = \frac{1}{1+2} = 0.33$$

b). Raising the threshold from 0.5 to 0.7 reduces FPR, while recall stayed the same.

In Danking context, threshold of 0.7 is better 00 it reduces FPR.